Checking out Hibernate with STS

I have cause to revisit my post about importing a git checkout into Eclipse. I need to take a look at the Hibernate code, which is on github at git://github.com/hibernate/hibernate-orm.git, and given the somewhat convoluted nature of this code, I need an IDE to help navigate it.

Now, I hear that with Eclipse Indigo (3.7), which is included with the latest STS 2.9 (which is what I use), the EGit plugin is included out of the box (which, for the purposes of this post, is what I’m doing – completely stock install). That’s helpful. See, previously, if you wanted to do something with git, you would find no evidence within Eclipse that it could. If you figured “there must be an extension for that” and searched for “git” from the extensions wizard, there would be no hits. Because what you needed to look for was “JGit” or “EGit” – you big dummy. An example of what I consider low discoverability that’s pervasive in Eclipse/STS. But I digress.

At least EGit has had a couple years to bake since my post. I went to File->Import->Git->Projects from Git and put in the URI above. This seems pretty straightforward:

Image

I’m not sure why it parses the URI into Host and Repository path here. Is there some reason you’d want to customize these?

In the next step, I pick the branches from the repo I want and proceed to the “local destination” dialog.

Image

These steps might be somewhat confusing to those who don’t know git and just want to take a look at some code. Since git is distributed, you don’t just get a point-in-time checkout from a repo, you get your own copy of the repo – or as much of it as you want. Basically it’s asking where I want my copy of the repository and checkout to go. The checkout (“initial branch” here) will go in the directory, and the repo will go in a .git subdirectory. “origin” is the name given to the repository I cloned this from, in case I want to sync with that later. That might be kind of obvious to someone familiar with git, but how about some tips for those who aren’t?

My question: why doesn’t this all simply default to being inside the workspace? What’s a workspace for, if not the project contents? As you can see, the default is to create a ~/git directory and checkout/clone the repo there.

Next step, three inscrutable options for how to deal with the resulting project(s) that have been checked out:

Image

OK. These seriously need some explanation. What do these do?

“Import existing projects” gets me nowhere in this case, as it requires Eclipse project descriptors to be included in the checkout, and they’re not. Arguably, they probably shouldn’t be. I just get the error “no projects found” if I try this. But that means I need to figure out myself how to get Eclipse/STS to interpret this checkout properly.

“Use the New Project wizard” is an option I don’t really understand. It just dumps you into the new project wizard you would get by clicking the new project button (generally the first button in the toolbar). This is also where you end up if you click “Finish” instead of “Next” anywhere along the way. I guess I could make use of the directory just created. I  also can’t go “back” and choose another option from here; cancel, and I’m back to square one. In general, I find the “New Project wizard” one of the most confusing things about Eclipse/STS, because there are so many options, many sounding similar yet meaning something completely different, and no explanations of what you can expect to get. Do I really have to go looking for doc that should be a click away? I digress.

“Import as general project” basically just creates a project with the given content and no organization. STS recognizes the different file types, of course, but there’s no concept of where the classpaths begin, how to build and test the project, anything like that – just plain directories with content. This won’t get me to my goal, which is to be able to look up class hierarchies, implementors of interfaces, etc. However, having done this, I can try to configure the project to get it to where STS understands these things.

I’m interested in the 3.6 branch of Hibernate, which is a Maven project (you can tell from the pom.xml – woe betide you in the Java world if you don’t recognize Maven when you see it. The “master” branch seems to be using Gradle). So I can right-click the project and Configure -> Convert to Maven Project.

By the way, let me point out something that didn’t work at all: creating a new project with the wizard “Maven -> Checkout Maven Projects from SCM”.

Image

This is apparently not aware of the EGit plugin, because there’s no SCM protocol listed here (the first box  is greyed out). If I click “Finish” here nothing happens except the dialog exits. I think it would probably work if I added a m2e SCM connector like the link suggests, but how would I know to do that?

Alright, so now I have a Maven project. Right away in the top-level pom.xml I get a “Project build error: Unresolveable build extension: Plugin org.jboss.maven.plugins:maven-jdocbook-style-plugin:2.0.0 or one of its dependencies could not be resolved: Could not find artifact org.jboss.maven.plugins:maven-jdocbook-style-plugin:jar:2.0.0 in central (http://repo1.maven.org/maven2)”. I happen to know what this is about because I know there are a bunch of JBoss dependencies not in Maven Central. How would I know that if I didn’t know? Google, I guess. Fortunately searching for that exact error message gets me right to a StackOverflow question about exactly the same thing, which someone has helpfully solved. I love SO, I just hate that it has to exist. Documentation is always about how to use something the right way, not what to do when something goes wrong. SO fills that gap.

So, add the repository information to the pom.xml – or, better, to my Maven settings.xml (which I had to create since STS is providing Maven in this setup) and on to the next problem. Two, actually (always seems to be the way of it – removing a build problem just uncovers more). These are related to “Missing artifact commons-logging”. A little Google sauce on that turns up this blog post (like the name, kinda like my blog!) about the death of the commons-logging dependency. Gotta love trying to support these old builds from a public ever-changing repo. Problem is, the Hibernate pom (actually the parent pom, which is in a subdirectory! huh?) uses the hack from that article, but the repo supplying the dummy dependencies seems to be down. So perhaps I should try the exclusions suggested by commentors in that blog? I found something that looks handy: in the pom dependency hierarchy, right-click and choose “Exclude Maven artifact”:

Image

Sadly, this doesn’t work:

Image

But here’s another StackOverflow suggestion. This seems to work, after removing the existing commons-logging dependencies and adding those ones in the parent pom, and (finally) right-clicking on the project, Maven -> Update project configuration. The errors are gone, and (I suspect) so is all the Maven-fu I can expect today.

Unfortunately I’m still not at my goal – I just have the Maven nature working now.

Turns out, this wasn’t quite the right path. What I’m looking at here are multiple Maven projects, with interdependencies. There’s no way I’m ever going to get anything useful from this in a single STS project. What I need to do is import these as multiple projects. In the meantime, delete the existing project (but leave the checkout) so it doesn’t get in the way.

So here’s what I do: File -> Import -> Existing Maven Projects and enter the path to my local checkout as the “Root Directory”:

If I select all the projects, they’ll all be created as interdependent workspace projects, each with build path and so forth configured according to Maven.

With lots of errors, of course… thousands, in fact. But let me start with the Maven problems, which are probably the source of the rest. Looks like all of the Maven errors are of the form “Plugin execution not covered by lifecycle configuration: org.jboss.maven.plugins:maven-injection-plugin:1.0.2:bytecode (execution: default, phase: compile)” – with a different plugin each time. I remember the import screen warned about some problems that would need to be resolved later – this seems to be what it was talking about.

Well, much later now, I think the Maven errors were mostly irrelevant. Those were due to the change to the m2eclipse plugin which broke the world for a lot of Maven users in Eclipse. Most of them were things that looked like it was safe to have m2eclipse “ignore” as recommended there. I went ahead and ran some of the goals that looked important (antrun:run and injection:bytecode in hibernate-entitymanager, the latter in hibernate-core) from the command line. Not sure they made much difference. I did Maven -> Update Project Configuration on everything changed and most of the red X’s went away.

I also ran into this problem and crashed a few times just by mousing over the “Window->Browser” menu before adding “-Dorg.eclipse.swt.browser.DefaultType=mozilla” to my STS.ini to avoid it.

At this point, the only problem seems to be that hibernate-entity has a ton of tests with imports like this:

import org.hibernate.ejb.metamodel.Customer_;
import org.hibernate.ejb.metamodel.Order;
import org.hibernate.ejb.metamodel.Order_;

… and then goes on to use these classes with underscores, which aren’t there. Evidently they’re supposed to be generated at some point, but I’m not sure how. I don’t really care about running these tests, just wanted to look at the framework code, so although STS reports 14382 Java problems, I can consider my work done here. Boy, that was easy!

One more note: I went back and added the git SCM connector for m2eclipse to try it out. It worked… but poorly. The way that worked was to select “git” for the scheme, then put in the git:// URI for the project, then wait for a popup to select the projects to import. If I reversed order or didn’t wait, I got either an error or nothing after hitting “Finish”. Hmm… hope that’s better in the next update. And, interestingly… the checkout/repo went into the workspace.

Advertisements

Android testing

After a nice presentation introducing TDD on Android, I wanted to jump right in with LogMyLife. Of course, the very first thing I tried, I got a lovely error:

java.lang.RuntimeException: Unable to resolve activity for: 
Intent { action=android.intent.action.MAIN flags=0x10000000
 comp={net.sosiouxme.logmylife.activity/net.sosiouxme.logmylife.activity.Main} }
at android.app.Instrumentation.startActivitySync(Instrumentation.java:447)
[...]

I just love errors like this which pretty much just give me no idea what’s going on. But I got a clue from this StackOverflow question on the same error – when I followed the tutorial, I adjusted it for LogMyLife’s package structure, in which all Activities are in a sub-package (.activity) from the main one. So my constructor looked like this:

public MainTest() {
  super("net.sosiouxme.logmylife.activity", Main.class);
}

The tutorial doesn’t really say what these parameters are. Evidently the first one should be the package of the app (in this case, “net.sosiouxme.logmylife”), not the activity being tested; I guess this makes sense for the instrumentation to hook into. But it’s an easy mistake to make…

Next problem: one of the things I’m most interested in testing is my BroadcastReceivers, particularly the one that receives BOOT_COMPLETE (hard to attach a debugger in time to see that one go through). Oddly, while there are instrumentation classes for the other three major Android components, there’s none for a BroadcastReceiver. I asked about it on StackOverflow, we’ll see if there’s an answer (I seem to have a talent for asking questions that get no answer). Maybe this can just be mocked somehow?

git rm; application toast pool; G1 bug

Alright, I know I saw it somewhere. How do I get git to add deletion of files to the transaction (when I deleted them w/out git rm and don’t want to git rm the whole list of them)? Can’t find the original answer but Stack Overflow’s top answer works for what I want. When I’ve done all my other adds and find there’s a bunch of deleted files left over… “git add -u”

On to fun stuff. I thought it seemed a bit wasteful to create toasts over and over, so I created a toast pool.

    // repository for created toasts
    private Map<Long,Toast> mToasts = new HashMap<Long,Toast>();
    private static final Long TOAST_LOG_DELETED = new Long(R.string.log_entry_deleted);
    private static final Long TOAST_LOG_CREATED = new Long(R.string.new_log_entry);
    protected void showToast(Long id) {
        Toast t = mToasts.get(id);
        if(t==null)
            mToasts.put(id, (t = Toast.makeText(this, id.intValue(), Toast.LENGTH_SHORT)));
        t.show();
    }

Initially I put this in an Activity that was creating a lot of toasts… then I thought, why not do this application-wide? Then if I need to show a toast with an Activity that’s finish()ing, it’ll still show. Plus better to have just one implementation and pool. So I put it in my Application object (WhenDidI) and the constants in my constant class (C). Now my toast calls look like this:

    ((WhenDidI) getApplication()).showToast(C.TOAST_LOG_DELETED);

A little wordy, but otherwise – good idea, no?

Asked my first question on StackOverflow yesterday. Seeing a bug with TimePicker apparently only on my G1. I’ll probably figure something out…

Most things in WhenDidI work as expected at this point, so I’m going to start getting familiar with styles and applying them everywhere. About time. This is a great post to help with understanding how styles are used in Android.